Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Eur Heart J Cardiovasc Imaging ; 25(4): e116-e136, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38198766

ABSTRACT

Cardiovascular diseases (CVD) represent an important cause of mortality and morbidity in women. It is now recognized that there are sex differences regarding the prevalence and the clinical significance of the traditional cardiovascular (CV) risk factors as well as the pathology underlying a range of CVDs. Unfortunately, women have been under-represented in most CVD imaging studies and trials regarding diagnosis, prognosis, and therapeutics. There is therefore a clear need for further investigation of how CVD affects women along their life span. Multimodality CV imaging plays a key role in the diagnosis of CVD in women as well as in prognosis, decision-making, and monitoring of therapeutics and interventions. However, multimodality imaging in women requires specific consideration given the differences in CVD between the sexes. These differences relate to physiological changes that only women experience (e.g. pregnancy and menopause) as well as variation in the underlying pathophysiology of CVD and also differences in the prevalence of certain conditions such as connective tissue disorders, Takotsubo, and spontaneous coronary artery dissection, which are all more common in women. This scientific statement on CV multimodality in women, an initiative of the European Association of Cardiovascular Imaging of the European Society of Cardiology, reviews the role of multimodality CV imaging in the diagnosis, management, and risk stratification of CVD, as well as highlights important gaps in our knowledge that require further investigation.


Subject(s)
Cardiology , Cardiovascular Diseases , Female , Humans , Male , Cardiovascular Diseases/epidemiology , Multimodal Imaging , Societies, Medical , Risk Factors
2.
Front Microbiol ; 14: 1223876, 2023.
Article in English | MEDLINE | ID: mdl-37731922

ABSTRACT

Introduction: Antimicrobial resistance (AMR) is an increasing public health concern for humans, animals, and the environment. However, the contributions of spatially distributed sources of AMR in the environment are not well defined. Methods: To identify the sources of environmental AMR, the novel microbial Find, Inform, and Test (FIT) model was applied to a panel of five antibiotic resistance-associated genes (ARGs), namely, erm(B), tet(W), qnrA, sul1, and intI1, quantified from riverbed sediment and surface water from a mixed-use region. Results: A one standard deviation increase in the modeled contributions of elevated AMR from bovine sources or land-applied waste sources [land application of biosolids, sludge, and industrial wastewater (i.e., food processing) and domestic (i.e., municipal and septage)] was associated with 34-80% and 33-77% increases in the relative abundances of the ARGs in riverbed sediment and surface water, respectively. Sources influenced environmental AMR at overland distances of up to 13 km. Discussion: Our study corroborates previous evidence of offsite migration of microbial pollution from bovine sources and newly suggests offsite migration from land-applied waste. With FIT, we estimated the distance-based influence range overland and downstream around sources to model the impact these sources may have on AMR at unsampled sites. This modeling supports targeted monitoring of AMR from sources for future exposure and risk mitigation efforts.

3.
JACC Cardiovasc Imaging ; 16(3): 269-278, 2023 03.
Article in English | MEDLINE | ID: mdl-36435732

ABSTRACT

BACKGROUND: Global longitudinal strain (GLS) can predict cancer therapeutics-related cardiac dysfunction and guide initiation of cardioprotection (CPT). OBJECTIVES: In this study, the authors sought to determine whether echocardiography GLS-guided CPT provides less cardiac dysfunction in survivors of potentially cardiotoxic chemotherapy, compared with usual care at 3 years. METHODS: In this international multicenter prospective randomized controlled trial, patients were enrolled from 28 international sites. All patients treated with anthracyclines with another risk factor for heart failure were randomly allocated to GLS-guided (>12% relative reduction in GLS) or ejection fraction (EF)-guided (>10% absolute reduction of EF to <55%) CPT. The primary end point was the change in 3-dimensional (3D) EF (ΔEF) from baseline to 3 years. RESULTS: Among 331 patients enrolled, 255 (77%, age 54 ± 12 years, 95% women) completed 3-year follow-up (123 in the EF-guided group and 132 in the GLS-guided group). Most had breast cancer (n = 236; 93%), and anthracycline followed by trastuzumab was the most common chemotherapy regimen (84%). Although 67 (26%) had hypertension and 32 (13%) had diabetes mellitus, left ventricular function was normal at baseline (EF: 59% ± 6%, GLS: 20.7% ± 2.3%). CPT was administered in 18 patients (14.6%) in the EF-guided group and 41 (31%) in the GLS-guided group (P = 0.03). Most patients showed recovery in EF and GLS after chemotherapy; 3-year ΔEF was -0.03% ± 7.9% in the EF-guided group and -0.02% ± 6.5% in the GLS-guided (P = 0.99) group; respective 3-year EFs were 58% ± 6% and 59% ± 5% (P = 0.06). At 3 years, 17 patients (5%) had cancer therapeutics-related cardiac dysfunction (11 in the EF-guided group and 6 in the GLS guided group; P = 0.16); 1 patient in each group was admitted for heart failure. CONCLUSIONS: Among patients taking potentially cardiotoxic chemotherapy for cancer, the 3-year data showed improvement of LV dysfunction compared with 1 year, with no difference in ΔEF between GLS- and EF-guided CPT. (Strain Surveillance of Chemotherapy for Improving Cardiovascular Outcomes [SUCCOUR]; ACTRN12614000341628).


Subject(s)
Breast Neoplasms , Heart Diseases , Heart Failure , Ventricular Dysfunction, Left , Humans , Female , Adult , Middle Aged , Aged , Male , Prospective Studies , Predictive Value of Tests , Ventricular Function, Left , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/diagnostic imaging , Antibiotics, Antineoplastic/adverse effects , Cardiotoxicity/drug therapy , Breast Neoplasms/drug therapy , Heart Diseases/chemically induced , Anthracyclines/adverse effects , Heart Failure/chemically induced , Heart Failure/diagnostic imaging , Heart Failure/drug therapy , Stroke Volume
5.
J Hazard Mater ; 434: 128934, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35461000

ABSTRACT

Urban streams are at high risk of riparian erosion which impacts adjacent infrastructure stability. Methods to prevent stream erosion have been proposed including using recycled concrete (RC) materials to help stabilize the streambed; however, little is known about the environmental and biological impacts of using RC in urban streams. RC, new concrete (NC), and river rock controls were evaluated for their impact on water chemistry, water quality, and microbial community composition over 6.5 months in controlled laboratory mesocosms. Concentrations of 19 metals, nutrients, and pH of mesocosms containing RC were not significantly different from the river rock mesocosm throughout the experiment; however, NC mesocosms contained significantly higher (p < 0.05) concentrations of Co, As, Al, and V in mesocosm water samples compared to both RC and the river rock control. Microbial community diversity was not significantly impacted by mesocosm treatment. Microbial sequences mapping to taxa including Rhodoferax, Acidovorax, Nitrosomonas, and Novosphingobium were significantly more abundant (p < 0.01) in RC and NC mesocosm samples; however, the overall microbial community structure was similar across treatment types. Results from this study suggest that RC does not significantly alter the stream environment including microbial community diversity and is a viable option for use in stream restoration projects.


Subject(s)
Microbiota , Rivers , Ecosystem , Fresh Water , Metals , Water Quality
6.
Environ Sci Technol ; 56(7): 4231-4240, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35298143

ABSTRACT

Surface water monitoring and microbial source tracking (MST) are used to identify host sources of fecal pollution and protect public health. However, knowledge of the locations of spatial sources and their relative impacts on the environment is needed to effectively mitigate health risks. Additionally, sediment samples may offer time-integrated information compared to transient surface water. Thus, we implemented the newly developed microbial find, inform, and test framework to identify spatial sources and their impacts on human (HuBac) and bovine (BoBac) MST markers, quantified from both riverbed sediment and surface water in a bovine-dense region. Dairy feeding operations and low-intensity developed land-cover were associated with 99% (p-value < 0.05) and 108% (p-value < 0.05) increases, respectively, in the relative abundance of BoBac in sediment, and with 79% (p-value < 0.05) and 39% increases in surface water. Septic systems were associated with a 48% increase in the relative abundance of HuBac in sediment and a 56% increase in surface water. Stronger source signals were observed for sediment responses compared to water. By defining source locations, predicting river impacts, and estimating source influence ranges in a Great Lakes region, this work informs pollution mitigation strategies of local and global significance.


Subject(s)
Water Microbiology , Water Pollution , Animals , Cattle , Environmental Monitoring , Feces , Humans , Rivers , Water
7.
J Clin Med ; 11(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35207185

ABSTRACT

The load dependence of global longitudinal strain (GLS) means that changes in systolic blood pressure (BP) between visits may confound the diagnosis of cancer-treatment-related cardiac dysfunction (CTRCD). We sought to determine whether the estimation of myocardial work, which incorporates SBP, could overcome this limitation. In this case-control study, 44 asymptomatic patients at risk of CTRCD underwent echocardiography at baseline and after oncologic treatment. CTRCD was defined on the basis of the change in the ejection fraction. Those with CTRCD were divided into subsets with and without a follow-up SBP increment >20 mmHg (CTRCD+BP+ and CTRCD+BP-), and matched with patients without CTRCD (CTRCD-BP+ and CTRCD-BP-). The work index (GWI), constructive work (GCW), wasted work (GWW), and work efficiency (GWE) were assessed in addition to the GLS. The largest increases in the GWI and GCW at follow-up were found in CTRCD-BP+ patients. The CTRCD+BP- patients demonstrated significantly larger decreases in GWI and GCW than their CTRCD+BP+ and CTRCD-BP- peers. ROC analysis for the discrimination of LV functional changes in response to increased afterload in the absence of cardiotoxicity revealed higher AUCs for GCW (AUC = 0.97) and GWI (AUC = 0.93) than GLS (AUC = 0.73), GWW (AUC = 0.51), or GWE (AUC = 0.63, all p-values < 0.001). GCW (OR: 1.021; 95% CI: 1.001-1.042; p < 0.04) was the only feature independently associated with CTRCD-BP+. Myocardial work is superior to GLS in the serial assessments in patients receiving cardiotoxic chemotherapy. The impairment of GLS in the presence of an increase in GWI and GCW indicates the impact of elevated afterload on LV performance in the absence of actual myocardial impairment.

8.
Antibiotics (Basel) ; 11(2)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35203862

ABSTRACT

The World Health Organization has identified antibiotic resistance as one of the largest threats to human health and food security. In this study, we compared antibiotic resistance patterns between ESBL-producing Escherichia coli from human clinical diseases and cefotaxime-resistant environmental strains, as well as their potential to be pathogenic. Antibiotic susceptibility was tested amongst clinical isolates (n = 11), hospital wastewater (n = 22), and urban wastewater (n = 36, both influent and treated effluents). Multi-drug resistance predominated (>70%) among hospitalwastewater and urban wastewater influent isolates. Interestingly, isolates from clinical and urban treated effluents showed similar multi-drug resistance rates (~50%). Most hospital wastewater isolates were Phylogroup A, while clinical isolates were predominately B2, with a more diverse phylogroup population in urban wastewater. ESBL characterization of cefotaxime-resistant populations identified blaCTX-M-1 subgroup as the most common, whereby blaKPC was more associated with ceftazidime and ertapenem resistance. Whole-genome sequencing of a carbapenemase-producing hospital wastewater E. coli strain revealed plasmid-mediated blaKPC-2. Among cefotaxime-resistant populations, over 60% of clinical and 30% of treated effluent E. coli encoded three or more virulence genes exhibiting a pathogenic potential. Together, the similarity among treated effluent E. coli populations and clinical strains suggest effluents could serve as a reservoir for future multi-drug resistant E. coli clinical infections.

9.
J Appl Microbiol ; 132(1): 747-757, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34312944

ABSTRACT

AIM: To determine the impact of an acute, pulse disturbance of nutrients from manure on freshwater sediment microbiomes in an experimental system. METHODS AND RESULTS: A controlled freshwater mesocosm experiment was designed to compare the effect of disturbance from nutrients derived from sterile manure (SM), disturbance from equivalent concentrations of laboratory-derived nutrients, and a nondisturbed control on freshwater sediment microbial community composition and function using 16S rRNA amplicon sequencing. Sediment microbiomes impacted by nutrients from SM showed no sign of compositional recovery after 28 days but those impacted by laboratory-derived chemicals lead to a new steady-state (p < 0.05). Carbon and nitrate sources within disturbed mesocosms were the primary drivers of altered microbial community composition. Additionally, multiple potential pathogens (based on exact sequence matching at the species level) were enriched in mesocosms treated with SM. CONCLUSIONS: Nutrient disturbance from SM, in the absence of the manure microbial community, alters the microbiome of sediments without recovery after 28 days and enriches potential pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: These results suggest manure land application practices should be re-evaluated to account for impact of nutrient disturbance on environmental microbiomes in addition to the impact of the manure microbial community.


Subject(s)
Manure , Microbiota , Fresh Water , Nutrients , RNA, Ribosomal, 16S/genetics
10.
Int J Hyg Environ Health ; 238: 113863, 2021 09.
Article in English | MEDLINE | ID: mdl-34662851

ABSTRACT

Antimicrobial resistance (AMR) remains one of the leading global health threats. This study compared antimicrobial resistance patterns among E. coli isolates from clinical uropathogenic Escherichia coli (UPEC) to hospital wastewater populations and throughout an urban wastewater treatment facility - influent, pre- and post-chlorinated effluents. Antibiotic susceptibility of 201 isolates were analyzed against eleven different antibiotics, and the presence of twelve antibiotic resistant genes and type 1 integrase were identified. AMR exhibited the following pattern: UPEC (46.8%) > hospital wastewater (37.8%) > urban post-chlorinated effluent (27.6%) > pre-chlorinated effluent (21.4%) > urban influent wastewater (13.3%). However, multi-drug resistance against three or more antimicrobial classes was more prevalent among hospital wastewater populations (29.7%) compared to other sources. E. coli from wastewaters disinfected with chlorine were significantly correlated with increased trimethoprim-sulfamethoxazole resistance in E. coli compared to raw and treated wastewater populations. blaCTX-M-1 group was the most common extended spectrum beta-lactamase in E. coli from hospital wastewater (90%), although UPEC strains also encoded blaCTX-M-1 group (50%) and blaTEM (100%) genes. Among tetracycline-resistant populations, tetA and tetB were the only resistance genes identified throughout wastewater populations that were associated with increased phenotypic resistance. Further characterization of the E. coli populations identified phylogroup B2 predominating among clinical UPEC populations and correlated with the highest AMR, whereas the elevated rate of multi-drug resistance among hospital wastewater was mostly phylogroup A. Together, our findings highlight hospital wastewater as a rich source of AMR and multi-drug resistant bacterial populations.


Subject(s)
Escherichia coli Infections , Escherichia coli , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Humans , Wastewater
11.
Environ Sci Technol ; 55(15): 10451-10461, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34291905

ABSTRACT

Microbial pollution in rivers poses known ecological and health risks, yet causal and mechanistic linkages to sources remain difficult to establish. Host-associated microbial source tracking (MST) markers help to assess the microbial risks by linking hosts to contamination but do not identify the source locations. Land-use regression (LUR) models have been used to screen the source locations using spatial predictors but could be improved by characterizing transport (i.e., hauling, decay overland, and downstream). We introduce the microbial Find, Inform, and Test (FIT) framework, which expands previous LUR approaches and develops novel spatial predictor models to characterize the transported contributions. We applied FIT to characterize the sources of BoBac, a ruminant Bacteroides MST marker, quantified in riverbed sediment samples from Kewaunee County, Wisconsin. A 1 standard deviation increase in contributions from land-applied manure hauled from animal feeding operations (AFOs) was associated with a 77% (p-value <0.05) increase in the relative abundance of ruminant Bacteroides (BoBac-copies-per-16S-rRNA-copies) in the sediment. This is the first work finding an association between the upstream land-applied manure and the offsite bovine-associated fecal markers. These findings have implications for the sediment as a reservoir for microbial pollution associated with AFOs (e.g., pathogens and antibiotic-resistant bacteria). This framework and application advance statistical analysis in MST and water quality modeling more broadly.


Subject(s)
Water Microbiology , Water Pollution , Animals , Bacteroides , Cattle , Environmental Monitoring , Feces , Ruminants , Water Pollution/analysis
12.
Front Microbiol ; 11: 539921, 2020.
Article in English | MEDLINE | ID: mdl-33178143

ABSTRACT

Microorganisms are critically important for the function of surface water ecosystems but are frequently subjected to anthropogenic disturbances at either acute (pulse) or long-term (press) scales. Response and recovery of microbial community composition and function following pulse disturbance is well-studied in controlled, laboratory scale experiments but is less well-understood in natural environments undergoing continual press disturbance. The objectives of this study were to determine the drivers of sediment microbial compositional and functional changes in freshwaters receiving continual press disturbance from agricultural land runoff and to evaluate the ability of the native microbial community to resist disturbance related changes as a proxy for freshwater ecosystem health. Freshwater sediments were collected seasonally over 1 year in Kewaunee County, Wisconsin, a region impacted by concentrated dairy cattle farming, manure fertilization, and associated agricultural runoff which together serve as a press disturbance. Using 16S rRNA gene amplicon sequencing, we found that sediments in locations strongly impacted by intensive agriculture contain significantly higher abundances (p < 0.01) of the genera Thiobacillus, Methylotenera, Crenotrhix, Nitrospira, and Rhodoferax compared to reference sediments, and functions including nitrate reduction, nitrite reduction, and nitrogen respiration are significantly higher (p < 0.05) at locations in close proximity to large farms. Nine species-level potential human pathogens were identified in riverine sediments including Acinetobacer lwoffi and Arcobacter skirrowii, two pathogens associated with the cattle microbiome. Microbial community composition at locations in close proximity to intensive agriculture was not resistant nor resilient to agricultural runoff disturbance within 5 months post-disturbance but did reach a new, stable microbial composition. From this data, we conclude that sediment microbial community composition is sensitive and shifts in response to chemical and microbial pollution from intensive agriculture, has a low capacity to resist infiltration by non-native, harmful bacteria and, overall, the natural buffering capacity of freshwater ecosystems is unable to fully resist the impacts from agricultural press disturbance.

13.
Sci Total Environ ; 740: 140186, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-32569917

ABSTRACT

Wastewater treatment plant (WWTP) effluent has been implicated in the spread of antibiotic resistant bacteria (ARB), including pathogens, as the WWTP environment contains multiple selective pressures that may increase mutation rates, pathogen survivability, and induce gene transfer between bacteria. In WWTPs receiving hospital sewage, this selective effect may be more pronounced due to increased concentrations of antibiotics, ARB, and clinical pathogens from hospital sewage. To determine the extent to which hospital sewage contributes to the microbial community of disinfected wastewater which is released into the environment, we used 16S rRNA sequencing of hospital sewage, WWTP influent, primary effluent, Post-Chlorinated Effluent, and receiving sediments in a combined sewage system to track changes in microbial community composition. We also sequenced the culturable survivor community resistant to ß-lactam antibiotics within disinfected effluent. Using molecular source tracking, we found that the hospital sewage microbiome contributes an average of 11.49% of the microbial community in Post-Chlorinated Effluents, suggesting microorganisms identified within hospital sewage can survive or are enriched by the chlorination disinfection process. Additionally, we identified 28 potential pathogens to the species level, seven of which remained detectable in Post-Chlorinated Effluent and environmental sediments. When Post-Chlorinated Effluents were cultured on media containing ß-lactam antibiotics ceftazidime and meropenem, a diverse antibiotic resistant survivor community was identified including potential human pathogens Bacillus cereus, Bacillus pumilus, and Chryseobacterium indologenes. Together, these results indicate that although wastewater treatment does significantly reduce pathogenic loads and ARBs, their continual presence in disinfected wastewater and receiving sediments suggests additional treatment and microbial tracking systems are needed to reduce human and animal health risks.


Subject(s)
Sewage , Wastewater , Animals , Anti-Bacterial Agents , Ceftazidime , Chryseobacterium , Humans , Meropenem , RNA, Ribosomal, 16S , Survivors
14.
Microorganisms ; 8(5)2020 May 16.
Article in English | MEDLINE | ID: mdl-32429352

ABSTRACT

Antimicrobial resistance (AMR) is a prevalent global health problem across human and veterinary medicine. The One Health approach to AMR is necessary to mitigate transmission between sources of resistance and decrease the spread of resistant bacteria among humans, animals, and the environment. Our primary goal was to identify associations in resistance traits between Escherichia coli isolated from clinical (n = 103), dairy manure (n = 65), and freshwater ecosystem (n = 64) environments within the same geographic location and timeframe. Clinical E. coli isolates showed the most phenotypic resistance (47.5%), followed by environmental isolates (15.6%) and manure isolates (7.7%), with the most common resistances to ampicillin, ampicillin-sulbactam, and cefotaxime antibiotics. An isolate subset was screened for extended spectrum beta-lactamase (ESBL) production resulting in the identification of 35 ESBL producers. The most common ESBL gene identified was blaTEM-1. Additionally, we found nine different plasmid replicon types including IncFIA-FIB, which were frequently associated with ESBL producer isolates. Molecular phylotyping revealed a significant portion of clinical E. coli were associated with phylotype B2, whereas manure and environmental isolates were more diverse. Manure and environmental isolates were significantly different from clinical isolates based on analyzed traits, suggesting more transmission occurs between these two sources in the sampled environment.

15.
Sci Rep ; 8(1): 11600, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30072706

ABSTRACT

Although Bacillus cereus is of particular concern in food safety and public health, the role of other Bacillus species was overlooked. Therefore, we investigated the presence of eight enterotoxigenic genes, a hemolytic gene and phenotypic antibiotic resistance profiles of Bacillus species in retail meat samples. From 255 samples, 124 Bacillus isolates were recovered, 27 belonged to B. cereus and 97 were non-B. cereus species. Interestingly, the non-B. cereus isolates carried the virulence genes and exhibited phenotypic virulence characteristics as the B. cereus. However, correlation matrix analysis revealed the B. cereus group positively correlates with the presence of the genes hblA, hblC, and plc, and the detection of hemolysis (p < 0.05), while the other Bacillus sp. groups are negatively correlated. Tests for antimicrobial resistance against ten antibiotics revealed extensive drug and multi-drug resistant isolates. Statistical analyses didn't support a correlation of antibiotic resistance to tested virulence factors suggesting independence of these phenotypic markers and virulence genes. Of special interest was the isolation of Paenibacillus alvei and Geobacillus stearothermophilus from the imported meat samples being the first recorded. The isolation of non-B. cereus species carrying enterotoxigenic genes in meat within Egypt, suggests their impact on food safety and public health and should therefore not be minimised, posing an area that requires further research.


Subject(s)
Bacillus cereus , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Food Microbiology , Meat/microbiology , Poultry Products/microbiology , Virulence Factors/genetics , Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Bacillus cereus/pathogenicity , Paenibacillus/genetics , Paenibacillus/isolation & purification
16.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Article in English | MEDLINE | ID: mdl-30010841

ABSTRACT

Kewaunee County, Wisconsin is an agricultural area dominated by concentrated animal feeding operations and manure fertilized cropland. The objective of this study was to characterize chemical and antibiotic resistance gene (ARG) profiles of 20 surface water locations in Kewaunee County to better understand relationships between agricultural contamination and ARG abundance over one year. Surface water (n = 101) and bed sediment (n = 93) were collected from 20 sites during five timepoints between July 2016 and May 2017. Samples were analyzed for six genes (erm(B), tet(W), sul1, qnrA, intI1 and 16S rRNA) and water chemistry and pollution indicators. qnrA, intI1 and sul1 genes in surface water were significantly higher than erm(B) and tet(W); however, no difference was present in sediment samples. Redundancy analysis identified positive correlations of nitrate, Escherichia coli, and coliforms with tet(W) and intI1 genes in sediment and intI1, sul1 and tet(W) genes in water. Temporal patterns of ARG abundance were identified with significantly higher gene abundances found in sediment during Kewaunee County's manure fertilization period; however, surface water patterns were not distinct. Together, these results suggest Kewaunee County sediments serve as a site of accumulation for non-point source agricultural pollution and ARGs on a temporal scale associated with manure fertilization.


Subject(s)
Drug Resistance, Microbial/genetics , Escherichia coli/drug effects , Geologic Sediments/microbiology , Rivers/microbiology , Agriculture , Animals , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Genes, Bacterial/genetics , Manure/microbiology , RNA, Ribosomal, 16S/genetics , Wisconsin
17.
JACC Cardiovasc Imaging ; 11(8): 1109-1118, 2018 08.
Article in English | MEDLINE | ID: mdl-29778856

ABSTRACT

OBJECTIVES: The goal of this study was to compare echocardiographic measurements of global longitudinal strain (GLS) (using 3 apical views) with single-view longitudinal strain (LS, 4- or 2-chamber [4CV_LS and 2CV_LS, respectively]) for detection of cancer-therapy related cardiotoxicity. BACKGROUND: GLS is useful for the detection of cardiotoxicity, but the need for repeated measurements poses a significant burden on busy echocardiography laboratories. A single-view LS measurement, possibly at point of care, could improve efficiency. METHODS: Seventeen international centers prospectively recruited 108 patients (mean age 54 ± 13 years) at high risk for cardiotoxicity as part of the ongoing SUCCOUR (Strain Surveillance for Improving Cardiovascular Outcomes During Chemotherapy) randomized controlled trial. Echocardiography performed at baseline and follow-up were analyzed in a core laboratory setting blinded to clinical information. Peak systolic GLS and LS were measured from raw data. Cardiotoxicity was defined by reduction in left ventricular ejection fraction >0.10 to <0.55 or a relative drop in GLS by ≥12%. RESULTS: Cardiotoxicity developed in 46 patients by either criteria. Baseline and follow-up 2-dimensional left ventricular ejection fraction were 61 ± 4% and 58 ± 5%, respectively (p < 0.001). The baseline GLS (-20.9 ± 2.4%) was not different from 4CV_LS (-20.7 ± 2.5%; p = 0.09) or 2CV_LS (-21.1 ± 3.1%; p = 0.25). The follow-up GLS (-19.5 ± 2.4%) was also similar to 4CV_LS (-19.5 ± 2.6%; p = 0.80) and 2CV_LS (-19.7 ± 3.1%; p = 0.19). There was good correlation between GLS and 4CV_LS at baseline (r = 0.86; p < 0.001) and follow-up (r = 0.89; p < 0.001) and with 2CV_LS at baseline (r = 0.87; p < 0.001) and follow-up (r = 0.88; p < 0.001). However, there was 15% to 22% disagreement between GLS and 4CV_LS or 2CV_LS for the detection of cardiotoxicity. The interobserver and intraobserver reproducibility was higher for GLS (intraclass correlation: 0.93 to 0.95; coefficient of variance: 2.9% to 3.7%) compared with either single-chamber-based LS measurement (intraclass correlation: 0.85 to 0.91; coefficient of variance: 4.1% to 4.8%). CONCLUSIONS: Although there was good correlation between GLS and single-view LS measurements, single-view LS measurement led to disagreement in the diagnosis of cardiotoxicity in up to 22% of patients. GLS measurements were more reproducible than single-view LS. GLS based on 3 apical views should remain the preferred technique for detection of cardiotoxicity. (Strain Surveillance for Improving Cardiovascular Outcomes During Chemotherapy [SUCCOUR]; ACTRN12614000341628).


Subject(s)
Anthracyclines/adverse effects , Antineoplastic Agents/adverse effects , Echocardiography/methods , Myocardial Contraction/drug effects , Trastuzumab/adverse effects , Ventricular Dysfunction, Left/chemically induced , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Function, Left/drug effects , Adult , Aged , Biomechanical Phenomena , Cardiotoxicity , Female , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Predictive Value of Tests , Risk Factors , Stroke Volume/drug effects , Time Factors , Ventricular Dysfunction, Left/physiopathology
18.
PLoS One ; 11(12): e0167613, 2016.
Article in English | MEDLINE | ID: mdl-27911941

ABSTRACT

Engineered nanoparticles are becoming increasingly incorporated into technology and consumer products. In 2014, over 300 tons of copper oxide nanoparticles were manufactured in the United States. The increased production of nanoparticles raises concerns regarding the potential introduction into the environment or human exposure. Copper oxide nanoparticles commonly release copper ions into solutions, which contribute to their toxicity. We quantified the inhibitory effects of both copper oxide nanoparticles and copper sulfate on C. elegans toxicological endpoints to elucidate their biological effects. Several toxicological endpoints were analyzed in C. elegans, including nematode reproduction, feeding behavior, and average body length. We examined three wild C. elegans isolates together with the Bristol N2 laboratory strain to explore the influence of different genotypic backgrounds on the physiological response to copper challenge. All strains exhibited greater sensitivity to copper oxide nanoparticles compared to copper sulfate, as indicated by reduction of average body length and feeding behavior. Reproduction was significantly reduced only at the highest copper dose, though still more pronounced with copper oxide nanoparticles compared to copper sulfate treatment. Furthermore, we investigated the effects of copper oxide nanoparticles and copper sulfate on neurons, cells with known vulnerability to heavy metal toxicity. Degeneration of dopaminergic neurons was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, mutants in the divalent-metal transporters, smf-1 or smf-2, showed increased tolerance to copper exposure, implicating both transporters in copper-induced neurodegeneration. These results highlight the complex nature of CuO nanoparticle toxicity, in which a nanoparticle-specific effect was observed in some traits (average body length, feeding behavior) and a copper ion specific effect was observed for other traits (neurodegeneration, response to stress).


Subject(s)
Caenorhabditis elegans/metabolism , Copper/toxicity , Dopaminergic Neurons/metabolism , Nanoparticles/toxicity , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Animals , Body Size/drug effects , Body Size/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Feeding Behavior/drug effects , Humans , Mutation , Neurodegenerative Diseases/genetics
19.
Microbiology (Reading) ; 162(9): 1563-1571, 2016 09.
Article in English | MEDLINE | ID: mdl-27450417

ABSTRACT

Methyl-tert-butyl ether (MTBE) and its degradation by-product, tert-butyl alcohol (TBA), are widespread contaminants detected frequently in groundwater in California. Since MTBE was used as a fuel oxygenate for almost two decades, leaking underground fuel storage tanks are an important source of contamination. Gasoline components such as BTEX (benzene, toluene, ethylbenzene and xylenes) are often present in mixtures with MTBE and TBA. Investigations of interactions between BTEX and MTBE degradation have not yielded consistent trends, and the molecular mechanisms of BTEX compounds' impact on MTBE degradation are not well understood. We investigated trends in transcription of biodegradation genes in the MTBE-degrading bacterium, Methylibium petroleiphilum PM1 upon exposure to MTBE, TBA, ethylbenzene and benzene as individual compounds or in mixtures. We designed real-time quantitative PCR assays to target functional genes of strain PM1 and provide evidence for induction of genes mdpA (MTBE monooxygenase), mdpJ (TBA hydroxylase) and bmoA (benzene monooxygenase) in response to MTBE, TBA and benzene, respectively. Delayed induction of mdpA and mdpJ transcription occurred with mixtures of benzene and MTBE or TBA, respectively. bmoA transcription was similar in the presence of MTBE or TBA with benzene as in their absence. Our results also indicate that ethylbenzene, previously proposed as an inhibitor of MTBE degradation in some bacteria, inhibits transcription of mdpA, mdpJ and bmoAgenes in strain PM1.


Subject(s)
Bacterial Proteins/genetics , Benzene Derivatives/metabolism , Benzene/metabolism , Betaproteobacteria/genetics , Betaproteobacteria/metabolism , Methyl Ethers/metabolism , Bacterial Proteins/metabolism , Betaproteobacteria/isolation & purification , Biodegradation, Environmental , Transcription, Genetic
20.
Environ Sci Process Impacts ; 18(8): 1060-7, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27291499

ABSTRACT

Triclosan, an antimicrobial chemical found in consumer personal care products, has been shown to stimulate antibiotic resistance in pathogenic bacteria. Although many studies focus on antibiotic resistance pertinent to medical scenarios, resistance developed in natural and engineered environments is less studied and has become an emerging concern for human health. In this study, the impacts of chronic triclosan (TCS) exposure on antibiotic resistance genes (ARGs) and microbial community structure were assessed in lab-scale anaerobic digesters. TCS concentrations from below detection to 2500 mg kg(-1) dry solids were amended into anaerobic digesters over 110 days and acclimated for >3 solid retention time values. Four steady state TCS concentrations were chosen (30-2500 mg kg(-1)). Relative abundance of mexB, a gene coding for a component of a multidrug efflux pump, was significantly higher in all TCS-amended digesters (30 mg kg(-1) or higher) relative to the control. TCS selected for bacteria carrying tet(L) and against those carrying erm(F) at concentrations which inhibited digester function; the pH decrease associated with digester failure was suspected to cause this selection. Little to no impact of TCS was observed on intI1 relative abundance. Microbial communities were also surveyed by high-throughput 16S rRNA gene sequencing. Compared to the control digesters, significant shifts in community structure towards clades containing commensal and pathogenic bacteria were observed in digesters containing TCS. Based on these results, TCS should be included in studies and risk assessments that attempt to elucidate relationships between chemical stressors (e.g. antibiotics), antibiotic resistance genes, and public health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Microbial Consortia/drug effects , Triclosan/pharmacology , Anti-Infective Agents/pharmacology , Bacteria/classification , Genes, Bacterial , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...